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ON THE MOSTOW RIGIDITY THEOREM 
AND MEASURABLE FOLIATIONS 

BY HYPERBOLIC SPACE* 

BY 

R O B E R T  J. Z I M M E R "  

ABSTRACT 

An ergodie-theoretic version of Mostow's rigidity theorem for hyperbolic space 
forms is obtained treating foliations of a measure space by reaves that carry the 
structure of a hyperbolic space. 

1. Introduction 

Suppose G and G '  are Lie groups acting in a measure class preserving fashion 

on measure spaces (S, it) and (S', i t ' )  respectively. There are then a variety of 

natural notions of " isomorphism" of the actions. If G = G '  one of course has the 

natural notion of conjugacy of the actions, namely the existence of a bijective 

(modulo null sets) measure class preserving Borel G - m a p  between S and S'. For 

arbitrary G and G ' ,  one has the notion of orbit equivalence of the actions, that 

is, the existence of a bijective (modulo null sets) measure class preserving Borel 

map from S to S' that takes orbits onto orbits. In other words, one asks for 

isomorphism of the associated measurable equivalence relations defined by the 

actions. For G = G '  this is, of course, a priori a much weaker notion than 

conjugacy of the actions. There are in addition a variety of intermediate notions 

of isomorphism that derive from the observation that each orbit of the action 

inherits a variety of structures from the group and hence one can ask for a 

bijective (modulo null sets) measure class preserving Borel map from S to S '  

that takes orbits onto orbits in such a way as to preserve a given structure on the 

orbits. Thus, for a Lie group acting (essentially) freely, (almost) every orbit will 

have a topological, differentiable, Riemannian, conformal,  etc., structure and so 
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we can speak of homeomorphic, smooth, isometric, quasi-isometric, conformal, 

quasi-conformal, etc., orbit equivalences. Providing each orbit with its G-space 

structure of course just leads to the notion of conjugacy of the actions. 

Abstracting the situation somewhat one can more generally speak of a 

measure space with an equivalence relation such that each equivalence class (or 

"leaf") has a topological, smooth, etc., structure which vary measurably over the 

entire measure space. Thus, for example, by a measurable foliation we mean the 

situation in which every equivalence class has a C~-structure and with a suitable 

local triviality condition holding [15], and by a stratified measure space we mean 

the situation in which each equivalence class has a locally compact topology [15]. 

Similarly, we speak of a Riemannian measurable foliation or measurable 

foliation with conformal structure. Each free ergodic action of a Lie group 

defines a measurable foliation [15] and smooth orbit equivalence is just 

isomorphism (or "diffeomorphism") of the associated measurable foliations. In 

the same manner, homeomorphic, isometric, etc., orbit equivalence is just 

isomorphism of certain natural associated structures. In certain situations, it is 

natural to consider not only the measurable foliations defined by the orbits of the 

Lie group action but also the measurable foliation defined by factoring by the 

action of a maximal compact subgroup. For example, if G is a connected 

semisimple Lie group with finite center, K C G a maximal compact subgroup, 

and S is a free ergodic G-space, then S/K has a natural equivalence relation on 

it in which each leaf has the structure of a Riemannian symmetric space 

isometric to G/K. (We discuss this more carefully in section 2 below.) 

In a recent paper [16] we proved an analogue of the Mostow-Margulis rigidity 

theorems for ergodic actions of connected semisimple Lie groups with finite 

center, no compact factors, and of R-rank at least 2. This theorem asserts that for 

irreducible ergodic actions of such groups with finite invariant measure, orbit 

equivalence of the actions implies first that the groups acting are locally 

isomorphic, and second that in the centerfree case the actions are conjugate 

modulo an automorphism of the group. In terms of the associated measurable 

foliations by symmetric spaces this theorem roughly asserts that isomorphism of 

the ergodic equivalence relations defined on transversals implies that the 

Riemannian measurable foliations are isometric modulo normalizing scalar 

multiples (independent of the leaves). Thus, at least for this class of measurable 

foliations by symmetric spaces, a purely measure theoretic invariant determines 

the symmetric Riemannian structure in almost every leaf. These results are all in 

very sharp contrast to those for actions of amenable groups, and one has for 

example the result that any two properly ergodic free actions of continuous 
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unimodular amenable groups with finite invariant measure are orbit equivalent 

[1 l, [2], [111. 
A question we raised in [16] was whether or not the results of that paper 

extend to the case of simple Lie groups of R-rank 1 thus, in particular, including 

within the above context a class of measurable foliations by hyperbolic space. 

The point of this paper is to present a result in this direction. Namely, our main 

theorem is the following. 

THEOREM I. Let G = SO(I,n)/{ +- I}, n >3 .  Let S, S' be essentially free 

ergodic G-spaces with finite invariant measure. Let K C G be a maximal compact 

subgroup and S / K and S'/ K the associated Riemannian measurable foliations by 

n-dimensional hyperbolic space G/K. Suppose there is a quasi-conformal 

homeomorphic orbit equivalence S/K ~ S'/K. Then the actions of G on S and S' 

are conjugate modulo an automorphism of G and the associated foliations by 
hyperbolic space are isometric modulo a normalizing scalar multiple. 

In particular, if the associated Riemannian measurable foliations by hyper- 

bolic space are quasi-isometric (i.e., there is a smooth orbit equivalence with the 

norm of the derivative and its inverse bounded on almost all leaves) then the 

actions are conjugate modulo an automorphism of the group. This is again in 

sharp contrast to the situation for R ~ actions where very different actions can 

define quasi-isometric Riemannian measurable foliations. (Cf. [6].) 

In [16], the assumption that the R-rank be at least 2 was necessary in order to 

use at a basic point a technique used by Margulis in proving arithmeticity of 

lattices [7]. In proving Theorem 1 we adopt a viewpoint closer to that of Mostow 

in his proof of rigidity of hyperbolic space forms [9], fl0]. In particular, we apply 

some fundamental results of Mostow on quasi-conformal mappings in higher 

dimensions which were basic to his original rigidity proof in [9]. 

The author wishes to thank A. Connes and J. Sacks for conversations 

concerning the material in this paper. 

2. Preliminaries 

We begin by establishing some basic definitions and recalling some results we 

will need. Let G be a locally compact second countable group, (S,/z) a standard 

Borel space with probability measure and suppose G acts on S so that the action 

map S • G ~ S is Borel and so that /z  is quasi-invariant under the action, i.e., 

for g E G and A C S measurable, ~ ( A ) = 0  if and only if I~(Ag)=0. We shall 

often be making the stronger assumption that /z is invariant, i.e., t z (Ag)= 
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p~ (A). The action is called ergodic if Ag = A for all g E G and A measurable 

implies A is null or conull. We call the action free if almost every stabilizer is 

trivial. If G is a Lie group, then S has the structure of a measurable foliation in 

the sense of [15], i.e., a measure space with equivalence relation such that each 

equivalence class has the structure of a C ~ manifold in such a way that a suitable 

local triviality condition holds. 

Suppose now that G is a connected semisimple Lie group with finite center 

and that K is a maximal compact subgroup. Define a : S x G --~ S by a(s,g) = 

sg. Let G act on S x G by (s ,h) .g  =(s, hg), so that a is then a G-map.  If we 

restrict the G-actions on S • G and S to K, the quotient spaces will be standard 

Borel spaces and hence we get an induced map ~ : S • K I G --~ S/K where we 

denote the set of cosets gK by K \ G. The space S/K has an equivalence relation 

given by the equivalence classes (or leaves) (s �9 G)/K. For each s E S, the map 

As : K \ G - * S / K  defined by &([g])=g~(s,[g])is a Borel map onto (s. G)/K 

and will be a bijection if the stabilizer of s is trivial. Furthermore,  for h ~ G we 

have the equation 

(1) &h o]3(h) = &, 

where ~ 8 ( h ) : K \ G - - * K I G  is left translation by h 1. Thus each leaf in S/K 

inherits a C~-structure from K / G  via & and (1) implies that this structure is 

independent of the choice of s in the leaf. Thus S/K is a smoothly stratified 

measure space in the sense of [15]. Furthermore,  one can show that the local 

triviality condition in [15] holds and hence S/K is a measurable foliation. (As we 

shall not make serious use of the local triviality condition, we now only indicate 

briefly how to obtain it, omitting some measure theoretic details. Let N A K  be 

an Iwasawa decomposition of G and No, A,, compact neighborhoods of the 

identity in N and A respectively. Then choose a transversal, or complete 

lacunary section in the sense of [5], T, for the G action on S with respect to the 

compact set N, AoK. Then the image of T.  N~,A~,K in S/K will have the required 

product structure. Choosing a suitable collection of T will produce the required 

locally trivial covering of S/K.) Now endow K \ G  with the (unique up to 

normalizing scalar multiples) G-invariant Riemannian metric converting K IG 

into a symmetric space. Equation (1) implies that this can unambiguously be 

transferred to each (s" G)/K, and hence S/K is a Riemannian measurable 

foliation with almost every leaf isometric to K \ G. 

We now recall the notion of a cocycle of an ergodic action. If S is an ergodic 

G-space and M is a standard Borel group a Borel function a : S x G---* M is 

called a cocycle if for all g, h E G, a (s, gh ) = a (s, g)a (sg, h) for almost all s. Two 
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cocycles, a, /3 are called equivalent if there is a Borel function q~ : S --, M such 

that for all g, ~o(s)a(s, g)q~(sg) ' = [3(s, g) a.e. If ~" : G ~ M is a homomorphism 

then a(s, g) = 7r(g)defines a cocycle ~,hich we call the restriction of ~r to S • G. 

An orbit equivalence also defines a cocycle. More precisely, if S, S'  are free 

ergodic G, G'-spaces, respectively, an orbit equivalence is a measure class 

preserving Borel bijection 0 : So---> S,'~ between conull sets such that orbits are 

mapped onto orbits. We can then define a : S • G ---> G'  (almost everywhere) by 

O ( s ) . a ( s , g ) =  O(sg). If G = G'  then one has the following cohomological 

condition that orbit equivalent actions be conjugate or automorphically conju- 

gate (i.e., conjugate modulo an automorphism of G). 

PROPOSITION 2 [16, proposition 2.4]. Suppose a is a cocyle defined by an orbit 

equivalence of two free ergodic G-actions, say on S, S'. Then if a is equivalent to 

the restriction to S x G of an automorphism of G then the G-actions are 

automorphically conjugate. If  the automorphism is inner, the actions are conjugate. 

Finally, we recall some facts concerning quasi-conformal mappings. For 

details, the reader is referred to Mostow's paper [9]. Suppose ~ : M---> M'  is a 

homeomorphism of Riemannian manifolds. For x ~ M and e > 0, let B (x, e) be 

the e-ball centered at x, R ( x , e )  the radius of the circumscribed ball of 

(B (x, e )) centered at ~ (x), r(x, e ) the radius of the inscribed ball of q~ (B (x, e)) 

centered at r  and O ( x ) = l i m s u p , _ o R ( x , e ) / r ( x , e ) .  Then ~, is called K- 

quasi-conformal if O ( x )  is bounded on M and O(x)<=K a.e. [9, p. 90], and 

quasi-conformal if it is K-quasi-conformal for some K. The proofs of the 

following results can be found in Mostow's paper [9]. 

THEOREM 3 (Mostow). (a) A quast-conformal map is differentiable almost 
everywhere [9, theorem 9.1]. 

(b) Let ~ : M ~ M'  be a quasi-conformal map of Riemannian manifolds and 

assume ~o is differenfiable at p E M. Then Q(p)2 = A/A, where A and h are the 

maximum and minimum eigenvalues, respectively, of (d~o)*(dr [9, p. 89]. 

(c) A l-quasi-conformal mapping S ~ -~ S ~ is con]ormal if n _-> 2 [9, lemma 
12.2]. 

(d) Let ~o be a quasi-conformal mapping of an open ball in R n onto itself. Then 

~p extends to a homeomorphism of the closed ball and the boundary homeomorph- 

ism of the sphere is quasi-conformal [9, theorems 10.1, 10.2]. 

3. Proof of Theorem 1 

The idea of the proof is the following. On each leaf, we have a quasi- 

conformal mapping and by Mostow's results these extend to quasi-conformal 
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mappings on the boundary spheres. The formalism we use to deal with this is to 

pull everything back to S • K \ G rather than work on the foliation itself. We 

first observe, using Proposition 2, that it suffices to prove that the boundary maps 

are actually conformal, and by Mostow's results it suffices to show that the 

boundary maps are 1-quasi-conformal. Our approach to this is to use ergodicity 

of the restriction of the G-action on S to a minimal parabolic subgroup, and 

then to show that quasi-conformality without 1-quasi-conformality would yield 

finite dimensional subrepresentations of the representation of the minimal 

parabolic on L2(S). This is impossible by results of C. C. Moore [8]. We now 

proceed to the proof. 

We have the map a :S  •  defining the action and we let 

a ~ : G ~ s . G C S  be given by a , ( g ) = a ( s , g ) .  We then have the equation 

ash o / 3 ( h ) = a ~  where / 3 ( h ) : G - - - > G  is left translation by h -~. We shall also 

denote by/3 (h) the map K \ G ~ K \ G given by left translation by h-l.  We also 

recall that we have the maps A, : K \ G ---> (s �9 G ) / K  as in the preceding section. 

We shall similarly denote by a ' ,  a',, etc., the corresponding maps defined for the 

G-action on S'. Let 0 : S /K- ->  S ' / K  be a quasi-conformal equivalence between 

the Riemannian measurable foliations. Since the G-actions are free and K is 

compact, as Borel K-spaces we have S = S / K  x K, S ' =  S ' / K  x K where the 

K-action is given by right translation on the second factor. Let 0 : S--> S '  be 

defined by 0([s], k) = (0([s]), k). Then 0 is a Borel orbit equivalence between 
the G-actions, and we let a : S  x G 

described in section 2. By Proposition 2, it 

the restriction of an automorphism of G. 
~a' ~-~ ~b, = (a~cs)) -1o 0 o a, where we view ~ oo)) 

the following holds: 

(2) For almost all s, /3 (a (s, 

This follows by observing that 

G be the corresponding cocycle as 

suffices to show that a is equivalent to 

For each s ~ S, define ~, : G --~ G by 

as a map O (s).  G ~ G. We now claim 

g)) = $,8 o/3 (g) o tk:'. 

t --I O q'~s = (a,~ss~) 0 o a ~  

I d P \ - !  o,)., , , ,)) o O o a~ o /3 (g )-' 

= ( a ' ~ , ) o / 3 ( a ( s , g ) ) - l ) - I o O  o a t  o / 3 ( g )  -1 

= / 3 ( a ( s , g ) ) o ~ ,  o/3(g) -1. 

The maps $, also have the property that they factor to maps 

q~s : K \ G ~ K \ G. To see this, observe that if x, y E G with x k  = y for some 

k ~ K, then 0(sy) = O(sxk)  = O(sx) .  k,  and so 
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O(s)" @,(y) = (0 o a , ) (y)  (by definition of @,) 

= [(0 o a , ) ( x ) ] ,  k 

= O(s). @,(x)k. 

By freeness of the action, this implies @, ( y ) =  @, (x)k. 
Thus from (2) we also have the relation 

(3) /3 (a is, g )) = ~ ,  o/3 (g)o ~ ; ' ,  

where now/3 is left translation on K \ G. The maps ~0, can alternatively be given 

by the formula ~0, = (k~(,)) -~ o 0 o k, where k and k '  are maps as above. The maps 

)t, and )t~(,) are isometries by definition of the Riemannian structure on the 

leaves of the measurable foliations and/~ is quasi-conformal. It follows that for 

almost all s, ~0, : K  \ G ~ K \ G is a quasi-conformal mapping. 

The Riemannian manifold K \  G can be identified with the unit ball in R" 

endowed with the Poincare metric and G then acts by isometries. Each isometry 

extends uniquely to a homeomorphism of the closed ball and one thus has an 

action of G on the boundary sphere S n-~. As shown in [9], G acts conformally 

and transitively on S n-t. The stabilizer of a point p0 E S "-j is a minimal parabolic 

subgroup P C G and we identify the sphere S"- '  with P \ G .  Since q~, is 

quasi-conformal, by Theorem 3, (p, extends to a homeomorphism of the closed 

ball, and we let q3~ dgnote the boundary homeomorphism, which is also 

quasi-conformal. Letting/3 denote the action of G on P \ G, from (3) we readily 

obtain 

(4) /3 (~ (s, g)) = •,, o/3 (g) o q5 7'. 

We now claim that to prove the theorem it suffices to show that qS, is actually 

1-quasi-conformal for almost all s. For then, by Theorem 3, q3, is conformal. The 

conformal group of the sphere can be identified with O(1, n)/{ +- I} [9], and hence 

for each s, we then have an element 9 ( s ) E  O(1, n)/{ + - I} such that 

/3 (,~ (s, g))  = /3  (,p (sg))/3 (g)/3 (,p (s))-~ 

where /3 represents the action of O(1, n)/{ +-I} on S "-t. Since the action of 

O(1, n)/{ +-I} on S"-~ is effective this implies that 

or(s, g) = ~O (s )-l g~o(sg ), 

i.e., a is equivalent as a cocycle into O(1, n)/{+-I} to the restriction of the 

embedding G ~ O(1, n)/{+- - I}. However, the argument of [I3, lemma 3.4] or 

[12, theorem 6.1] then shows that as cocycle into G, a is equivalent to the 
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restriction of an automorphism of G (which in fact comes from an inner 

automorphism of O(1, n)/{ -+ I}). The theorem then follows from Proposition 2. 

To show that G is 1-quasi-conformal for almost all s, for (s, x ) E  S x G/P let 

C(s,~ be the maximal eigenvalue of d(G)*d(~,)~. Since G is quasi-conformal for 

almost all s, Cc,.~ is well-defined for almost all (s,x). One can also check that 

C,.~ is measurable. Let V,.~ C T(G/P)x be the subspace consisting of eigenvec- 

tors with eigenvalue C,.x~. We can also characterize V,.~ as { r E  

T(G/P)~ Since G acts conformally on S" ', by 

rewriting (4) as G, =/3 (a (s, g))o G ~ (g) ', it follows that 

(5) dfl(g)~ (V~.,) = V, . . . . .  

We also note that G acts ergodically on S x G/P as this is equivalent to the 

ergodicity of P on S [14, theorem 4.2] which in turn follows by results of C. C. 

Moore [8]. Equation (5) implies that dim(V(,.xl) is essentially invariant, and so by 

ergodicity dim V(,,~ = k for almost all (s, x) where 1 < k < n - 1. To show that r 

is 1-quasi-conformal for almost all s, it suffices by Theorem 3(b) to show that 

k = n - 1. By Fubini, there exists x E G/P such that dim V,.x~ = k for almost all 

s E S and equation (5) holds for almost all s E S. Let P '  be the stabilizer of x in 

G. Then by restricting to S x{x} we can view V as a map V : S  ~ G(n - 1 , k )  

where the latter is the Grassmann manifold of k-planes in the n - 1 dimensional 

space T(G/P)x. The group P'  acts on T(G/P)x via v . h  =d/3(h)x(v) and 

equation (5) says that V is essentially a P'-map. By Moore's ergodicity theorem 

[8], P '  is ergodic on S and hence if we le t /z  be the given measure on S, then 

V . ( / l )  is a probability measure on G(n - 1, k) which is invariant and ergodic 

under P'.  However,  it is easily seen that the linear transformations of T(G/P)~ 

defined by elements of P '  form exactly the group of similarities of this inner 

product space, and hence each P'-orbit  in G(n - 1, k) is closed. This implies that 

each P'-ergodic measure on G(n - 1, k) is supported on an orbit [3]. Thus we 

can view V as a P'-map V : S - ~  P'/Po where Po C P'  is the stabilizer of an 

element in G(n - 1, k). We can write P ' =  M A N  where M is isomorphic to the 

n - 2 dimensional special orthogonal group and acts on S"-' leaving x fixed, and 

A and N are the group of conformal transformations of S"- '  corresponding 

under stereographic projection of S " - ' - { x }  onto the space tangent to the 

antipodal of x, to the positive scalar multiples and the translations in the tangent 

space, respectively. (See [9, p. 98] for example.) Furthermore,  N acts trivially on 

T(G/P)x [10, 20.18], A acts by scalar multiplications, and A N  is normal in P'. 

Therefore,  A N  C Po and the P '  action on P'/Po factors to a P' /AN = M action. 

In particular, by the compactness of M, L2(P'/Po) is a direct sum of finite 
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dimensional P'-invariant subspaces, where the action of P '  on L2(P'/Po) is 

translation. However,  the P ' -map S--*P'/Po shows that L2(p'/Po)C L2(S) 

corresponds to a subrepresentation of the representation of P '  on L2(S). By 

Moore's theorem [8], this implies L2(p'/Po) is the constants, i.e., that Po = P',  so 

that P '  leaves an element in G ( n -  1,k)  invariant. This clearly implies k = 

n -  1, and as remarked above, this suffices to prove Theorem 1. 

4. Concluding remarks 

(a) Theorem 1 is of course also true for actions of O(1, n)/{ + I} and the proof 

in fact shows that for these groups the conclusion can be strengthened to assert 

that the actions are actually conjugate (rather than conjugate modulo an 

automorphism). 

(b) The proof of Theorem 1 also shows the following. 

THEOREM 4. Let G, K, S, S' be as in Theorem 1. Suppose the measurable 

foliations S /K  and S ' /K are smoothly isomorphic in such a way that almost all the 

diffeomorphisms between leaves extend to diffeomorphisms of the boundary 
spheres. Then the G-actions on S and S' are conjugate modulo an automorphism 

of G coming from an inner automorphism of O(1, n)/{ +- I}. 

(c) If (X,,~) is any ergodic Riemannian measurable foliation by hyperbolic 

n-space, then one can show that (X, ~ )  is derived, via the above construction, 

from an ergodic action of O(1,n)/{ + 1}. If ( X , ~ )  is any ergodic measurable 

foliation and T is a transversal, then there is an assigned measure class on T that 

is quasi-invariant under the partial automorphisms of the equivalence relation 

on T defined by intersection with the leaves. We say that the foliation has a 

holonomy invariant measure if there is a measure in this measure, class which is 

actually invariant under the partial automorphisms. (This is independent of the 

transversal.) If there is a Riemannian structure on each leaf, then there is a 

measure on X that locally is the integral, with respect to the invariant measure 

on the transversals, of the measures on the leaf determined by the Riemannian 

structure. We say that the foliation has finite total volume if this measure is finite 

on X. These remarks and Theorem 1 for O(1, n ) / { -  + 1} actions enable us to 

deduce the following. 

THEOREM 5. Let (Xi, ~ ) ,  i = 1, 2, be ergodic measurable foliations by hyper- 

bolic n-space, n >= 3, and assume both foliations have a holonomy invariant 

measure and finite total volume. If the foliations are quasi-conformally equivalent, 
then they are isometric modulo a normalizing scalar multiple (independent of the 

leaf). 
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(d) One has the following questions. 

(1) Can Theorem 1 be extended to actions of other R-rank 1 simple Lie 

groups, perhaps using ideas of [10, sections 19-23]? 

(2) Can a free ergodic action of SO(I, n) with finite invariant measure be orbit 
equivalent to such an action of SO(l, k)? More generally, do the results of [16] 

extend to the R-rank 1 case? 
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